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DISCLAIMER 

 

While the Agriculture and Horticulture Development Board seeks to ensure that the 

information contained within this document is accurate at the time of printing, no warranty is 

given in respect thereof and, to the maximum extent permitted by law the Agriculture and 

Horticulture Development Board accepts no liability for loss, damage or injury howsoever 

caused (including that caused by negligence) or suffered directly or indirectly in relation to 

information and opinions contained in or omitted from this document.  

 

© Agriculture and Horticulture Development Board 2018. No part of this publication may be 

reproduced in any material form (including by photocopy or storage in any medium by 

electronic mean) or any copy or adaptation stored, published or distributed (by physical, 

electronic or other means) without prior permission in writing of the Agriculture and 

Horticulture Development Board, other than by reproduction in an unmodified form for the 

sole purpose of use as an information resource when the Agriculture and Horticulture 

Development Board or AHDB Horticulture is clearly acknowledged as the source, or in 

accordance with the provisions of the Copyright, Designs and Patents Act 1988. All rights 

reserved. 

 

All other trademarks, logos and brand names contained in this publication are the trademarks 

of their respective holders. No rights are granted without the prior written permission of the 

relevant owners.  

 

[The results and conclusions in this report are based on an investigation conducted over a 

one-year period. The conditions under which the experiments were carried out and the results 

have been reported in detail and with accuracy. However, because of the biological nature of 

the work it must be borne in mind that different circumstances and conditions could produce 

different results. Therefore, care must be taken with interpretation of the results, especially if 

they are used as the basis for commercial product recommendations.] 
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GROWER SUMMARY 

Headline 

There is a potential application for the development of proximal sensor devices for the 

detection of abnormalities in plants and crops that are associated with pest and pathogen 

effects. At this stage however it is difficult to quantify the financial benefits of the evaluated 

sensors especially with respect to their current cost of operation. As such no change to 

growing practice is currently advised. 

Background 

This project is intended to evaluate the feasibility of developing biospectroscopy (MIR and 

Raman spectroscopy) as sensor technologies in various horticultural settings to mitigate crop 

loss. Rapid non-destructive sensors, such as biospectroscopy, will aid in the development of 

sustainable technologies for the reduction of crop loss to pests and pathogens pre and post-

harvest, thereby improving the rational use of crop control measures and reducing negative 

environmental impacts.  

Summary 

At this point and due to exploratory nature of the project, there is insufficient material to 

expand this section reliably, especially because data analysis for many of the results is on-

going and need to be validated through reproducibility. 

Financial Benefits 

Due to the stage of development of the technology, prospective financial benefits cannot be 

meaningfully analysed. 

Action Points 

 Currently no change to grower practice is advised 
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SCIENCE SECTION 

Introduction 

Food security and production sustainability is projected to become more challenging as global 

population rises. Additionally, horticultural losses in the form of pre- and post-harvest crop 

losses caused by adverse environmental conditions, pests, and pathogens impact negatively 

on food security, causing pre-consumer crop losses of as much as 40% (Gerland et al 2014). 

This contributes significantly to problems including economic damage, malnourishment, 

natural resource depletion, and can lead to excessive use of crop protection products (Savary 

et al. 2012). To avoid such impacts on crop production (Ray et al 2013), solutions must be 

found to reduce of crop loss in pre- and post-harvest settings (crop cultivation, harvest, 

packaging, distribution, consumer waste, etc.). The numbers of variables involved in crop 

cultivation, specifically with regard to mitigating loss are impressive as well as challenging 

and this makes development of methods for crop monitoring difficult. This has left tasks such 

as plant disease detection and identification, to expert growers who currently have access to 

a variety of technologies many of which are destructive, laborious, difficult to use, and not 

necessarily representative of often heterogeneous field settings (Mahlein et al. 2016).  

Technologies enabling non-destructive detection of the negative effects of biotic and abiotic 

stressors on plants and harvested products can therefore contribute to sustainable 

agricultural production. Candidate technologies for helping reduce crop losses include non-

destructive optical sensors, but the number of variables and complexity of modern farming 

suggests that a range of technologies will be needed (Sankaran et al 2010; Mahlein 2016). 

Ideally, sensor information may be used for both predictions, such as real time decision 

making in agricultural systems, while simultaneously contributing to our knowledge of plant 

function. From a practical perspective, these sensor technologies must be adaptable from 

crop to crop, and usable in variable field conditions. Providing growers with tools to detect, 

identify, and even quantify disease, damage or other parameters relevant to quality 

assurance is a high priority for development.  

Vibrational spectroscopy in biology (biospectroscopy) has been successful as a biomolecular 

sensor for disease detection and discrimination of abnormal cells and tissues based on 

spectral alterations. Biospectroscopy has become an enormous field within the past few 

decades covering studies in molecular and cell biology, tissue analysis of sentinel organisms 

to track persistent pollutants, environmental monitoring including whole plant analysis (Butler 

et al. 2015). These new applications of vibrational spectroscopy have prompted the 

evaluation of this technology as a physiological sensor in plant science for horticultural 

applications. Vibrational methods, including Mid-Infrared (MIR) and Raman spectroscopy are 
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among the most well-known techniques for investigating biological materials including cells 

and tissues (Chan and Kazarian 2015). Biospectroscopy generates an information-rich 

spectrum, indicative of chemical constituents for multi-component analysis. MIR and Raman 

spectroscopy employ light between 2.5-25µm wavelengths to excite the energy of molecular 

arrangements within a sample (Kazarian and Chan 2013). Light energies within the MIR 

range correspond to vibrational and rotational modes of biochemical functional groups 

present in proteins, lipids, carbohydrates, and nucleic acids (Baker et al. 2014). Disparate 

light-matter interactions of IR and Raman provide complementary information on the relative 

abundance and types of chemical structures within a sample, in the form of a wavenumber 

spectrum (Figure 1).  

 

 

Figure 1: Attenuated total reflectance Fourier transform infrared (ATR-FTIR) class mean spectra of apple peel (blue), lettuce 

leaves (green), and tomato skin (red) over the ‘fingerprint’ region (1800-900cm-1) of the MIR range. 

 

Modern MIR spectroscopy generates highly characteristic spectral ‘fingerprints’ or 

‘signatures’ which represent a collection of hundreds to hundreds of thousands of potential 

bonds (Butler et al. 2016). These can enable detection of useful disease markers or 

biomarkers associated with an abnormal state (damage, disease, contamination, 

deterioration, etc.). Such biomarkers are generally extracted as part of an exploratory 

framework, after which these may be evaluated as part of a diagnostic framework aimed at 

making predictions as part of a machine learning approach (Trevisan et al. 2012). For 

horticultural applications, the accuracy of a diagnostic framework must be sufficiently high 

before it may serve as an automated decision making platform in high throughput systems. 

Promising decision-making platforms are initially designed and tested, then used and refined. 

Although diagnostic frameworks may be used to supplement expert evaluations when 
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needed, automatic diagnostic frameworks, even in the absence of experts, will be a necessity 

as part of sustainable practices.  

This PhD project is aimed at evaluating biospectroscopy as a potential solution, through the 

pre-symptomatic detection of pests and pathogens to reduce crop loss. With future 

investigations and collaboration with industry partners, major problem areas will be identified 

at the pre- and post-harvest stages of the food supply chain, where biospectroscopy may be 

employed. 

 

 

Materials and methods 

 

Plant Growth Conditions 

Materials and methods for this project differ broadly with regard to cultivation conditions, 

subjects, and treatments across the numerous experiments performed. Glasshouse 

conditions for experiments with Solanum lycopersicum cv. Moneymaker (Thompson and 

Morgan Seeds, UK) were typically set at the following conditions: 18/6hr photoperiod with 

irradiance between 200-500 μmol/m2/s; 30-50% relative humidity; Levington M3 growth 

medium; in 1L (13cm) or 2L (17cm) pots. Plants were watered once daily to soil holding 

capacity. Tomato fruits were analysed from commercial stores or harvested from plants grown 

in the same conditions as mentioned above but in 20L pots to fruit maturity.   

 

Sample Preparation 

To simulate field conditions and realistic post-harvest scenarios, as well as to facilitate entirely 

non-destructive measurements, minimal sample preparation was performed. With the 

exception of very few experiments, all samples (plants and fruit) were analysed intact. 

Typically de-ionized water and a clean cloth was used to remove dust, dirt, and obvious debris 

from fruit prior to spectral analysis.   

Several experiments made use of pathogen infection protocols using Botrytis cinerea. 

Infection protocols used were previously described by Audenaert et al (1999).  
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Spectral Acquisition 

FTIR spectra were obtained with either a benchtop Bruker TENSOR 27, or semi-portable 

Bruker ALPHA-P FTIR, spectrometer with Attenuated Total Reflectance (ATR) module 

(Bruker Optics, Germany). Parameters were a sampling area of 250 by 250 µm or 1 mm2 for 

the TENSOR and ALPHA respectively. Spectra were taken at a spectral resolution of 8 cm-1 

(3.84 cm-1 data spacing), with 32 co-additions and a mirror velocity of 2.2/7.5 kHz for optimum 

signal to noise ratio (Martin et al. 2010). Background spectra were taken prior to each new 

sample, to account for any changes in atmospheric conditions. The ATR diamond was 

cleaned with Bruker ATR cleaning wipes prior to new sample measurement to ensure no 

spectral contributions of previous substances remaining on the diamond which are not water 

soluble. The penetration depth of the ATR-FTIR evanescent wave ranges between 0.5 and 5 

µm at 4000–700cm-1. Raman analysis was not employed during year 2 of this project as the 

FTIR spectrometers clearly showed better application potential with regard to the aims and 

objectives of this project.  

 

Data Analysis 

Dataset analysis was conducted using the open-source IRootLab toolbox 

(http://trevisanj.github.io/irootlab/) (Trevisan et al. 2013) combined with Matlab 2014a (The 

Maths Works, MA, USA). Raw ATR-FTIR spectra were cut at the spectral fingerprint region, 

1800–900 cm-1, as this is where biological molecules predominantly absorb. Analysis steps 

in sequence involved pre-processing, normalization, PCA analysis, PCA-LDA analysis, and 

wavenumber extraction through either a cluster vector (CV) or loadings approach combined 

with a peak picking algorithm (16 cm-1 and 5 peaks / 8 cm-1 and 10 peaks) previously (for 

detailed background information on data analysis see Trevisan et al 2012). Large spectral 

datasets contain hundreds of data points which undergo pre-processing, standardization / 

normalization, and feature extraction by way of data reduction. Unsupervised and supervised 

data analysis including principal component analysis (PCA) and linear discriminant analysis 

(LDA) respectively, are effective as part of exploratory analysis. Data reduction and feature 

extraction using PCA and or PCA-LDA permits the differentiation of dataset variance where 

PCA allows the visualization and extraction of features (principal components) responsible 

for overall dataset variance including intra-class variance. Intra-class variance, analogous to 

natural heterogeneity, may be more predominant than differences attributed to the assigned 

class or category (i.e. control vs treatment 1 vs treatment 2 etc.). By combining PCA with LDA 

(PCA-LDA), it is possible to maximize class or categorical variance, while minimizing the 

contributions from overall dataset variance. New in year 2 of this project was the use of 

http://trevisanj.github.io/irootlab/
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classifier algorithms as part of a diagnostic (predictive) framework. These classifiers, 

including support vector machine (SVM) and linear discriminant classifier (LDC), evaluate 

how well MIR spectra serve to identify class treatment (normal from abnormal) within 

autonomous computer systems.  

In summary, the exploratory framework employing PCA and LDA investigate the biological 

basis (changes in the biochemistry) for spectral changes, while classifiers use the spectral 

matrix (x/y number matrix) to determine how well these variable can be used to predict a 

specific condition. Combined this gives biological insight, as well as information on sensor 

performance for direct commercial application.  
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Results 

Building on previous results from year 1, the year 2 experimental design was focused to study 

tomato as the primary plant/crop model. Tomato (Solanum lycopersicum) was previously 

studied with ATR-FTIR and Raman spectroscopy and was chosen in conjunction with 

microscopic pathogens such as Botrytis cinerea to characterize spectral alterations in 

response to tissue necrosis associated with this pathogen. Several experiments were 

conducted in both whole plants and tissue samples (leaflets specifically). Multiple sensors 

were combined in whole plant experiments to cover both physiological measurements using 

infrared gas analysis (IRGA) sensors such as LiCor photosynthesis sensors, combined with 

IR spectroscopy. 

In addition to the focused experimental design of year 2, several datasets were re-visited to 

evaluate classifier performance for automated detection/decision based on IR spectroscopy 

data. Details are given in the individual experiments presented below.  

 

EXPERIMENT: Investigating Botrytis cinerea Infection in Tomato Plant Tissue using 
ATR-FTIR Spectroscopy and Multivariate Analysis 

 

Tomato leaf tissues (leaflets) were sprayed with solution inoculated with B. cinerea spores in 

order to compare healthy tissue with infected tissue based on their MIR spectra. Pictures 

(Figure R1.1) clearly show the deterioration of tomato leaves infected with the fungus. Control 

leaves showed no visual signs of decay or infection over the one week time course.  

 

 
Figure R1.1: Progression of Botrytis cinerea infection in tomato leaf tissue  

(left to right at Day 1, 3,5, and 7) 

 

ATR-FTIR spectra were obtained over the time course for both healthy and diseased tissue 

in order to compare the spectral alterations associated with each treatement (i.e. regular 

ageing/senescence versus infection). Second order differentiated and vector normalized pre-

processed mean spectra for all groups in the study are shown in Figure R1.2.  
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Figure R1.2: Class mean ATR-FTIR spectra of experimental groups  

(control and infected leaftlets at day 1, 3, 5, and 7) 

 

Spectral alterations of both control leaflets and infected leaflets where categorized in 

reference to freshly removed leaf tissue from control plants on day 1 (Figure R1.3). While 

these have been tabulated, the analysis for this experiment is on-going. It was however 

determined that according to spectral data, there appears to be a potential mechanistic link 

between the natural progression of leaf senescence in control plants and the induced tissue 

decay of B.cinerea infected leaflets (figure not shown), although this has yet to be confirmed. 

What can be confirmed is that there is a statistical difference in LD1 scores between spectra 

from control and infected tomato plant tissue for all but day 7. On day 7, control leaflets 

showed similar spectral alterations to infected leaflets.    

 
Figure R1.3: PCA-LDA cluster vector peak location plots showing the top 6 wavenumbers differing 

between experimental groups and fresh cut control leaflets on day 1 
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EXPERIMENT: Investigating Botrytis cinerea Infection in Whole Tomato Plants using 
Physiological IRGA and ATR-FTIR Spectroscopy: A Multi-Sensor Approach 

 

Whole tomato plants were drop infected with solution inoculating spores of  B.Cinerea. 

Leaves of intact plants were measured using a LiCor IRGA sensor measuring parameters of 

photosynthesis (Figure R2.1), transpiration, stomatal conductance, and internal carbon 

concentration. While no visual symptoms of the infection arose in infected plants, there 

appeared to be a physiological response on day 5 post infection (Figure R2.1). This response 

was consistent for the other parameters measured (transpiration, stomatal conductance, and 

internal carbon).  

Figure R2.1: Physiological response to B.Cinerea infection in leaves of whole tomato plants 

 

Comparing results obtained from IRGA measurements to ATR-FTIR spectroscopy showed a 

statistically significant response on day 2 and 3, as determined by ANOVA analysis of LD1 

scores, which preceded physiological responses measured by the IRGA sensor (Figure R2.2; 

statistical indicators not yet added). This may suggest that ATR-FTIR spectroscopy may 

detect physiological changes (those measured) associated with pathogen infection prior to 

conventional IRGA sensors. However, it is difficult to confirm that the physiological changes 

arising on day 5, seen by IRGA measurements, as well as those detected by ATR-FTIR 

spectroscopy, are in fact due to the fungus and not another factor. Data analysis and 

exploration of the results for this experiment are still in progress and therefore serve only as 

preliminary results. 
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Figure R2.3: PCA-LDA scores of ATR-FTIR spectra obtained from whole tomato plant leaves for 

controls at day 1 (pre-infection), 2, 3, 4, and 5 and infected groups at day 2, 3, 4, and 5  

 

 

EXPERIMENT: Characterizing Intact Tomato Fruit Development and Ripening using 
Semi Portable ATR-FTIR Spectroscopy   

Due to the limited amount of research employing biospectroscopy in whole plants and fruit, it 

was necessary to characterize natural on-plant tomato fruit development and ripening to 

establish a baseline of spectral alterations in order to distinguish natural processes from 

abnormal conditions (damage, stress, infection, etc.). In an attempt to achieve this, 

greenhouse grown tomato fruits were measured intact at various stages of natural 

development and ripening. Figure R3.2 and R3.3 show clustering of developmental and 

ripening groups (On plant tomatoes shown in Figure R3.1). 

 

 
Figure R3.1 On-plant tomatoes for development and ripening study 
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Development of tomato was distinguished at 9 separate stages ranging from very small 

immature through to mature green. ATR-FTIR spectra were obtained from 10 fruit (2 per plant) 

with 10 spectra taken from each fruit to increase the number of biological replicates and 

generate representative spectral clusters from each group for comparison. At each 

developmental stage there is overlap between stages suggesting the common spectral 

elements between groups and distinct features of each group. This is shown in figure R3.2.  

 

 
Figure R3.2: PCA-LDA scores of 9 distinct developmental stages of tomato 

 

Similarly, ripening stages of tomato also formed distinct groups along both LD1 and LD2, with 

less overlap compared to developmental stages suggesting more pronounced differences at 

each stage of the ripening process (Figure R3.3). This may be due fewer distinguished groups 

during the ripening stages compared with development. All tomatoes analysed during the 

ripening process were of comparable size as to minimize data variance based on size, weight, 

etc. This is new work, which has yet to be fully analysed, specifically the spectral biomarkers 

responsible for data separation of development and ripening stages. However, preliminary 

results shown here suggest that ATR-FTIR spectroscopy accurately reflects the molecular 

level changes, which are also visible with the naked eye, associated with visible fruit growth 

and ripening. These results will be compared to store bought tomatoes of a different cultivar 

in order to determine both common biomarkers within tomato cultivars, if any, and the unique 

markers to each.  
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Figure R3.3: PCA-LDA scores of 6 distinct ripening stages of tomato 

 

Preliminary classifier results for both fruit development (Figure R3.4) and ripening (Figure 

R3.5) stages showing very good accuracy for ‘critical’ classification, misclassification is likely 

due to the very similar molecular composition of fruit at these stages, such as development 

stage 5 (DS05) with a lower classification accuracy of approximately 50%. These stages, 

pending further analysis, may be classed as ‘critical’ or ‘non-critical’ depending on the industry 

application. In other words, if only a sub-set of the developmental stages need to be correctly 

identified, then these may be deemed ‘critical’, while all other stages may be deemed ‘non-

critical’. 

 
Figure R3.4: PCA-LDC classifier results for autonomous classification of  

developmental stages of tomato fruit  
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Classification accuracy for ripening stages (Figure R3.5) were exceptionally good with a 

minimum accuracy of 90.71%. From these results, it appears that ripening stages are more 

readily identified compared to developmental stages. These results will be adapted to visual 

ripening scales in order to develop methods for the objective determination of optimal 

ripeness, for example mature green, breaker, yellow, pink, light red, red, although other 

applications are possible depending on the exact needs of industry. 

 

 
Figure R3.5: PCA-LDC classifier results for autonomous classification of  

ripening stages of tomato fruit 

 

 

Discussion 

Experimental data obtained to date indicates that vibrational spectroscopy methods, 

especially ATR-FTIR spectroscopy is capable of generating high quality spectra of intact plant 

leaves and fruit. Using various data analysis models, differences in healthy and diseased 

plants including fruit can be detected and characterized. Because there is only a limited 

amount of work done on intact plants, plant tissues, and whole fruit makes it difficult to 

compare with published literature and therefore presents a novel approach to the 

development of biospectroscopy as a sensor technology for horticulture. Although data 

analysis has not been finalized for most experiments, several trends become clear including 

the ability to adapt biospectroscopy to a number of intact plant systems. In so far, it will take 
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more time before the mechanisms, which are being measured and which are responsible for 

data separation in most cases, are clearly identified and incorporated into the plant sciences. 

However, simple classification of treatments using classifier algorithms has been very 

successful providing a basis for commercial sensor development using biospectroscopy 

techniques. This research shows the possibility to use this approach for whole plants and 

fruit. The difficulty of getting whole plants into contact with currently available biospectroscopy 

equipment, makes the evaluation of these methods for field applications difficult. In contrast, 

biospectroscopy may be more readily adapted for fruit analysis, especially post-harvest for 

high throughput screening. The high success rate of classifier algorithms for autonomous 

sorting of fruit and identification of abnormal states in plants, suggest that sensor 

development may be facilitated without knowing the mechanistic changes taking place with 

regard to the biomolecules measured. In any case, identifying infection category of diseased 

plants, stress phenomena, as well as shelf life, ageing, or damaged plants and fruit can be 

achieved in most cases and on a variety of produce (apple, lettuce, tomato, etc.). For these 

application, ATR-FTIR, especially in macro mode, appears to be more versatile and 

appropriate compared to Raman spectroscopy. The higher variability within Raman spectra 

is likely attributed to the different penetration depth and interrogation area of these methods. 

Raman spectra, due to the small laser spot size and deeper sample penetration, generally 

shows higher variability as it measures more tissue layers. In contrast ATR-FTIR interrogates 

small tissue sections and penetrates only shallow into the sample resulting in more 

reproducible and therefore robust spectra. However, these techniques are complementary 

and may be variably applied in different settings depending on specific research or application 

needs.  

Spectral changes and the associated wavenumber markers are tentatively assigned as 

responsible for the observed alterations. Identified wavenumber markers will serve as starting 

points (input) for the development of a diagnostic framework. In combination with previous 

publications, the work here further supports the practicality of biospectroscopy, and extends 

its use as a physiological sensor capable of detecting stress-like responses. This 

demonstrates, albeit preliminarily, the potential for vibrational spectroscopy to become an 

agricultural sensor technology for monitoring of plants and their products with the potential 

for disease detection. Given the complex nature of plants grown in agricultural settings, 

especially outdoors, biospectroscopy will likely become one of many sensors within a multi-

sensor array. As part of a multi-sensor assembly, biospectroscopy methods will fall into the 

category of proximal sensors requiring immediate proximity to the sample being analysed. It 

should be noted that hand held sensors reliable enough to augment/replace expert 

growers/pathologists for large scale routine screening would be most useful. What remains 
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elusive is the pre-symptomatic detection of spectral alterations prior to irreversible effects 

such as tissue necrosis and disease spread.  

Future investigation will include extensive characterization of differences between healthy 

and mildly infected leaves, to determine potential spectral biomarkers associated specifically 

with pre-symptomatic development of tissue necrosis as a result of disease such as leaf spot. 

Additionally, the notion of conserved and specific stress responses will be explored. In 

summary, experimental applications of biospectroscopy in the form of ATR-FTIR and Raman 

spectroscopy are versatile and capable of measuring fresh plant materials including whole 

plants. Extensive changes in spectral clusters relating to sample category were observed in 

all experiments.  

 

Conclusions 

 Experimental data obtained to date indicates that vibrational spectroscopy is capable 

of generating high quality spectra of intact plant leaves and fruit.  

 Analysis of completely unprepared samples maintains greenhouse/field applicability.  

 Classifier algorithms applied to spectral data are have shown a high degree of 

accuracy suggesting rapid adaptations to industry. 

 More data analysis is needed to completely evaluate the full potential of these sensors 

for commercial applications (aim for year 3). 

 How successful these sensors will be for the pre-symptomatic phase is difficult to 

determine at this stage. 

 Biospectroscopy remains an exceptionally strong candidate sensor technology for 

further development and incorporation into multi-sensor platforms aimed at 

horticultural detection systems.  

 Once adapted for commercial use, biospectroscopy has the potential to significantly 

reduce crop loss.  

 

Knowledge and Technology Transfer 

To date the main form of technology transfer has been by way of conference contributions 

(posters, oral presentations, discussions). One publication is pending acceptance.  
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Appendices 

A comprehensive appendix is being compiled for inclusion in the final report as much of the 

experimental data analysis is still in progress and figures have not been formally composed.  

 


